

Operating algorithm of hybrid power plant of a wind park and a Pumped Hydro Storage system aiming at 100% R.E.S. penetration

The wind powered PHS hybrid plant can be introduced in power systems of small and medium size to approach the 100% RES penetration. The corresponding operation algorithm is analysed below:

- 1. For each time calculation step, the total available power production from the RES unit P_{RES} and the current power demand P_d are introduced. Additionally, a maximum RES direct penetration percentage versus the power demand p_{max} is defined (usually around 30%).
- 2. The RES direct penetration P_{RESp} is calculated from the following relationships:
 - a. If $P_{RES} \ge p_{max} \cdot P_d$, then $P_{RESp} = p_{max} \cdot P_d$.
 - b. If $P_{RES} < p_{max} \cdot P_d$, then $P_{RESp} = P_{RES}$.
- 3. If P_p is the nominal power of the storage units (pumps), then the potential power storage P_{st} is calculated as follows:
 - a. If $P_{RES} P_{RESp} > P_p$, then $P_{st} = P_p$.
 - b. If $P_{RES} P_{RESp} \le P_p$, then $P_{st} = P_{RES} P_{RESp}$.
- 4. The water volume V_p that must be stored in the PHS upper reservoir to achieve power storage P_{st} for a time calculation step with duration t is calculated:

 $V_p = P_{st} \cdot t \cdot \eta_p / \gamma \cdot H_p$

where H_p is the available head of the pumping penstock, γ the water specific weight and η_P the pumps overall efficiency for the current operation conditions.

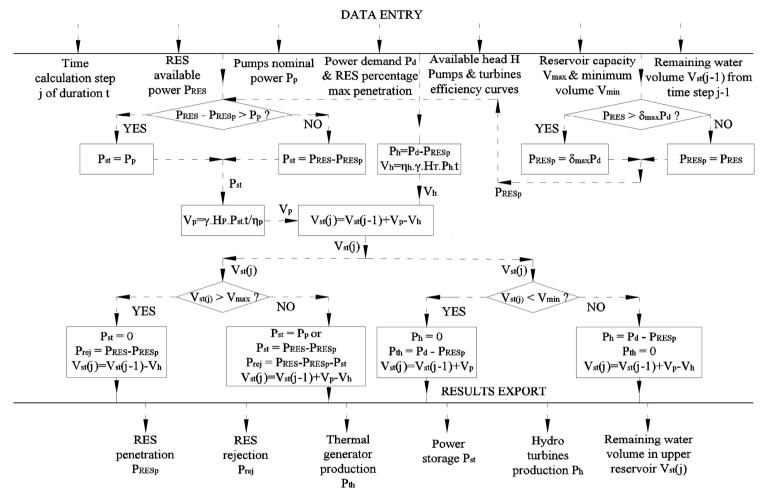
5. The water volume V_h that must be removed from the PHS upper reservoir to achieve a hydro turbines power production of $P_d - P_{RESp}$ for a time calculation step of duration t is calculated:

 $V_h = (P_d - P_{RESp}) \cdot t / \eta_h \cdot \gamma \cdot H_T$

where H_T is the available head of the falling penstock and η_h the hydro turbines overall efficiency for the current operation conditions.

6. The water volume $V_{st}(j)$ remaining in the PHS upper reservoir after the current calculation time step j is calculated as:

where $V_{st}(j-1)$ is the water volume remaining in the PHS upper reservoir from the previous calculation time step.


- 7. The capacity V_{max} of the PHS upper reservoir to store the potential water volume remaining after the current time calculation step is examined:
 - a. If $V_{st}(j) > V_{max}$, then: $P_{st} = 0$ $P_{rej} = P_{RES} - P_{RESp}$ $V_{st}(j) = V_{st}(j-1) - V_h$.
 - b. If $V_{st}(j) \le V_{max}$, then: $P_{st} = P_p \text{ or } P_{st} = P_{RES} - P_{RESp}$ $P_{rej} = P_{RES} - P_{RESp} - P_{st}$ $V_{st}(j) = V_{st}(j-1) + V_p - V_h$

where P_{rej} is the RES power rejection.

- 8. Additionally, the adequacy of stored water volume to support the required hydro turbines power production during the current calculation time step is examined (V_{min} the minimum possible water volume stored in the PHS upper reservoir):
 - a. If $V_{st}(j) < V_{min}$, then: $P_h = 0$ $P_{th} = P_d - P_{RESp}$ $V_{st}(j) = V_{st}(j-1) + V_p$. b. If $V_{st}(j) \ge V_{min}$, then: $P_h = P_d - P_{RESp}$ $P_{th} = 0$ $V_{st}(j) = V_{st}(j-1) + V_p - V_h$.

The above described operation algorithm is depicted in figure 1.

Figure 1: Operation algorithm of a wind park – PHS hybrid power plant aiming to 100% RES penetration.

Operating algorithm of hybrid power plant of a wind park and a Pumped Hydro Storage system aiming at 100% R.E.S. penetration