Dimitris AI. Katsaprakakis Aeolian Land S.A. www.aiolikigi.gr

Combined production of electricity and potable water with a hybrid power plant and a desalination unit in the island of Kasos, Dodecanese, Greece



Kasos, 20<sup>th</sup> of August 2014



#### Hybrid Power Plants - Introduction



#### Aim of a hybrid power plant

A hybrid power plant for electricity production aims to cover an inflexible power demand, from non-guaranteed Renewable Energy Sources (R.E.S.) power plants.

To approach the above target, the R.E.S. power plants should be combined with storage power plants.

To ensure the uninterrupted cover of the power demand, the hybrid power plant is integrated with a back-up unit, which aims to undertake the requested power production when no power production is possible either from the R.E.S. or the storage power plant.



#### Aim of a hybrid power plant

According to the abovementioned, a hybrid power plant consists of the following discrete components:
 non-guaranteed power production units (base units)
 storage units
 back-up units.



### Hybrid power plants of large size



#### Synthesis of a hybrid power plant of large size

The synthesis of hybrid power plants of large size (guaranteed powr production higher than 1MW) is approached by composing the following most technically mature and economically competitive technologies:

base units: wind parks

storage power plants: pumped hydro storage systems (PHS).



#### Synthesis of a hybrid power plant of large size





#### What is Pumped Hydro Storage





#### Indicative examples of operating PHS: Goldisthal (Germany)



Hydro turbines power: 1.060MW Upper reservoir capacity: 12.10<sup>6</sup>m<sup>3</sup> Net head: 300m.

#### Indicative examples of operating PHS: Kannagawa & Kazunogawa (Japan)





#### Indicative examples of operating PHS: Anapo (Sicily, Italy)





Hydro turbines power: 500MW
Upper reservoir capacity: 5,6.10<sup>6</sup>m<sup>3</sup>
Lower reservoir capacity : 7,3.10<sup>6</sup>m<sup>3</sup>
Net head: 302m
Penstock diameter: 6,5m.





#### Indicative examples of operating PHS: Okinawa (Japan)



Hydro turbines power: 32MW
 Upper reservoir capacity: 1.10<sup>6</sup>m<sup>3</sup>
 Net head: 150m.



#### Indicative examples of operating PHS: : Dinorwig (Whales)



Hydro turbines power: 1.728MW
 Upper reservoir capacity: 7.10<sup>6</sup>m<sup>3</sup>
 Net head: 110m.



#### Indicative examples of operating PHS: : Raccoon Mountain (U.S.A.)





Visitor Center Open daily except major holidaye 9:00 a.m. to 5:00 p.m.

TVA is proud of Recooon Mountain Pumped Storage Plant and the benefits it provides to local and regional residents. Enjoy your visit, and thank you for taking the time to learn more about TVA power plants. If you have additional questions, please see a Visitor Center staff member. Also visit www.tva.com for further information about the Tennessee Valley Authority, including annual and environmental reports, events, history, and facilities

> For alternate formate of this document, il 800-632-6824 and slow five working inter processing Contraction in case

Tennessee Valley Authority

#### Raccoon Mountain

TVA



Maller Center



Upper dam height 230 feat Upper dam length 8,500 feet Power especitly 4 units supplying 1,632 magawette Upper reservoir length EN IN 1070-78

#### How does a pumped storage plant work?

Water is pumped from the lower reservoir to the upper one during periods of low demand. It's stored there until power is needed, and then water is pulled from the reservoir and into a large concrete pipe that leads almost 1,000 feet down inside

Fishing

Picnie Area

Overfeek

(lasebal

Volleytadl

Ŧ

T



the mountain. The flow of water spins the turbines, which rotate a shaft inside an electromagnetic coil, producing electricity. When power generation isn't needed, the turbines operate in reverse, pumping water back up into the upper reservoir.





The water

drops 990 feet

from the upper reservoir at Raccoon

Mountain Pumped Storage Plant to the

the water is used to generate electricity.

it is discharged into the lower reservoir.

turbines deep inside the mountain. After



#### Hybrid power plants for power peak shaving







#### Hybrid power plant of Kasos



# The siting of the hybrid power plant's wind park in Kasos



# Wind potential measurements in the wind parks' installation site



| 22.5m wind mast |
|-----------------|
|                 |
|                 |

| Wind mast installation position coordinates | WGS'84            | Latitude  | 35º 24′ 54.70′′ B |
|---------------------------------------------|-------------------|-----------|-------------------|
|                                             |                   | Longitude | 26º 58′ 46.40′′ A |
| Measurements period                         | Since             |           | 14/5/2010         |
|                                             | То                |           | 14/5/2011         |
|                                             | Duration (months) |           | 12                |
| Measurements height above ground (m)        |                   |           | 22,5              |
| Measurements position absolute altitude (m) |                   |           | 584,0             |

### Wind potential measurements in the wind parks' installation site





#### Wind potential map Wind park siting





Wind park nominal power 4,5MW Five wind turbines Enercon E-44 / 900kW



#### The selected wind turbine model





#### PHS siting





#### Upper reservoir design







#### The upper reservoir installation area





#### Sealing of upper reservoir





#### Fundamental features of upper reservoir

| Total capacity (m <sup>3</sup> )                                       | 483.313 |
|------------------------------------------------------------------------|---------|
| Effective capacity (m <sup>3</sup> )                                   | 465.062 |
| Maximum absolute altitude of the reservoir's surface (m <sup>2</sup> ) | 36.654  |
| Area of the reservoir's bottom (m <sup>2</sup> )                       | 27.981  |
| Installation area absolute altitude (m)                                | 480     |
| Bottom's absolute altitude (m)                                         | 465     |
| Maximum reservoir's depth (m)                                          | 15      |
| Slope of the reservoir's sides (°)                                     | 45      |
| Total digging works volume (m <sup>3</sup> )                           | 86.394  |



#### Penstock installation





#### Penstock vertical cross-section view





#### Penstock route 3-D view

Total length of steel tubes (m)

Total tubes length (m)

Tubes inner diameter (m)



1.032,74 417,07 1.449,81 0,90

### Example of penstock installation from the PHS in El Hiero, Canary islands, Spain





#### Underwater penstock installation





#### Pumps station suction side





#### Pump station and hydro power plant siting



### Pump station and hydro power plant installation area







#### Hydro power plant vertical cross-section view





#### Hydro turbines and pumps nominal power

| Туре          | Model                            | Nominal power<br>per unit (kW) | Number of<br>units | Total nominal power (kW) |
|---------------|----------------------------------|--------------------------------|--------------------|--------------------------|
| Hydro turbine | Pelton, horizontal shaft         | 2.075                          | 2                  | 4.150                    |
| Pump          | Multi-stage,<br>horizontal shaft | 560                            | 8                  | 4.480                    |



#### Guaranteed power production

|                                                                                     | Day power<br>demand peak<br>period | Night power<br>demand peak<br>period | Total time of guaranteed<br>power production per<br>day |
|-------------------------------------------------------------------------------------|------------------------------------|--------------------------------------|---------------------------------------------------------|
| Winter period<br>(from 15 <sup>th</sup> of October<br>to 15 <sup>th</sup> of April) | 10:00 – 16:00                      | 16:00 – 21:00                        | 11                                                      |
| Symmer period<br>(from 15 <sup>th</sup> of April to<br>15 <sup>th</sup> of October) | 10:00 – 17:00                      | 17:00 – 21:00                        | 11                                                      |

Guaranteed power production: 4MW

#### Annual energy production The perspective of desalination



| Wind park's annual electricity production (MWh)       | 20.714 |
|-------------------------------------------------------|--------|
| Hydro turbines annual electricity production (MWh)    | 11.478 |
| Annual energy storage from the wind parks (MWh)       | 17.922 |
| Annual energy storage from thermal generators (MWh)   | 0.00   |
| PHS overall efficiency (%)                            | 64,05  |
| Wind park annual electricity production surplus (MWh) | 2.792  |

Given that the wind park's electricity annual surplus is estimated at 2.792MWh and the electricity annual rejection from the existing wind parks is estimated at 1.761MWh, the possibility for potable water production via a desalination plant is estimated annually at 1,8 millions m<sup>3</sup> by exploiting the above electricity surplus from the wind parks, assuming a specific electricity consumption by the desalination unit of 2,5kWh/m<sup>3</sup> of potable water.

#### Power production synthesis High power demand season (August)



AEOLIAN LAND S.A

#### Power production synthesis Low power demand season (April)



AEOLIAN LAND S.A.



### Percentage distribution of the annual electricity production





### Upper reservoir stored water volume annual variation





#### Hybrid power plant set-up cost

| No   | Set-up cost component      | Cost (€)   |
|------|----------------------------|------------|
| 1    | Wind park                  | 4.800.000  |
| 2    | Hydro power plant          | 2.800.000  |
| 3    | Pump station               | 2.240.000  |
| 4    | Upper reservoir            | 4.300.000  |
| 5    | Penstock                   | 2.400.000  |
| 6    | New roads cosntruction     | 600.000    |
| 7    | Connection grid            | 000.008    |
| 8 .  | Other infrastructure works | 900.000    |
| 9    | Buildings                  | 500.000    |
| 10   | SCADA                      | 2.200.000  |
| 11   | Consulting and licensing   | 300.000    |
| 12 . | Other costs                | 500.000    |
|      | Total cost                 | 22.340.000 |



#### Benefits for the island of Kasos

- Contribution to the energy supply secutiry.
- Availability of abundant potable water with low cost.
- Public compensation rates for the Municipality of Kasos of about 110.000 annualy.
- Five permanent work positions.
- Disposal of around half of the project's budget locally in the island of Kasos, during the set-up of the project.
- Improvement of the existing infrastructure of electricity and roads networks.

### Thank you for your attention



Dimitris Al. Katsaprakakis